A Certain Integral-recurrence Equation with Discrete-continuous Auto-convolution
نویسنده
چکیده
Laplace transform and some of the author’s previous results about first order differential-recurrence equations with discrete auto-convolution are used to solve a new type of non-linear quadratic integral equation. This paper continues the author’s work from other articles in which are considered and solved new types of algebraic-differential or integral equations.
منابع مشابه
Initial-value Problems for First-order Differential Recurrence Equations with Auto-convolution
A differential recurrence equation consists of a sequence of differential equations, from which must be determined by recurrence a sequence of unknown functions. In this article, we solve two initial-value problems for some new types of nonlinear (quadratic) first order homogeneous differential recurrence equations, namely with discrete auto-convolution and with combinatorial auto-convolution o...
متن کاملSolving Volterra Integral Equations of the Second Kind with Convolution Kernel
In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad et al., [K. Maleknejad and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, Appl. Math. Comput. (2005)] to gain...
متن کاملAbout stability of a difference analogue of a nonlinear integro-differential equation of convolution type
A nonlinear integro-differential equation of convolution type with order of nonlinearity more than one and a stable trivial solution is considered. The integral in this equation has an exponential kernel and polynomial integrand. The difference analogue of the equation considered is constructed in the form of a difference equation with continuous time and it is shown that this difference analog...
متن کاملA History of Feynman’s Sum over Histories in Quantum Mechanics
Exact calculations of Feynman’s path integrals (defined on a time lattice) are mainly based on recurrence integral formulas in which the convolution of two functions having a common feature retains the same feature. Therefore, exactly soluble path integrals in quantum mechanics may be classified by their recurrence integral formula used in the calculation. According to this classification, ther...
متن کاملOn the discrete and continuous Miura Chain associated with the Sixth Painlevé Equation
A Miura chain is a (closed) sequence of differential (or difference) equations that are related by Miura or Bäcklund transformations. We describe such a chain for the sixth Painlevé equation (PVI), containing, apart from PVI itself, a Schwarzian version as well as a second-order second-degree ordinary differential equation (ODE). As a byproduct we derive an auto-Bäcklund transformation, relatin...
متن کامل